Science 3 min read

7 Machine Learning Tools for IIoT

For your convenience, Edgy has compiled 7 machine learning tools for companies looking to be a part of the Industrial Internet of Things, or IIOT.

Aleutie | Shutterstock.com

Aleutie | Shutterstock.com

Machine learning is a branch of AI that enables AI to retain the memory of past computations and utilize those outcomes to inform current solutions to complex problems. 

Companies at the forefront of the machine learning field offer open source libraries of solutions for companies and the average person.

IIOT refers to the Industrial Internet of Things.Click To Tweet

Below is a list of seven open-source platforms that help businesses integrate machine learning into their production process. With these toolkits, businesses, regardless of their size, can get access to the same ML resources developed and used by prestigious companies.

The 7 Machine Learning Tools for IIoT:

1. Amazon Machine Learning:

In 2015, Amazon’s subsidiary AWS (Amazon Web Services) launched Amazon Machine Learning as part of its Cloud-based solutions. AML is a deliberately simplified platform intended for developers of any skill level to walk them through the creation of machine learning predictive models.

2. Google’s TensorFlow:

Google uses TensorFlow toolkit for its own products and services. Since 2015, TensorFlow is an open source software library for deep learning. The updated version, TensorFlow 1.0 is now available, with much faster calculations, more flexibility and features, and support for new languages.

3. Microsoft’s Azure:

The Azure Machine Learning Studio is Microsoft’s Cloud-based platform that allows businesses and organizations to benefit from machine learning solutions that are easy to implement. With AMLS‘s collaborative, drag-and-drop machine learning tools, businesses can easily create, test, deploy and share predictive models.

4. H20:

Used by over 80,000 data scientists and 9,000 organizations around the world, H20.ai is the biggest open source AI platform that enables enterprises to get a “digital brain.” H20 products, such as Deep Water, makes the training and deployment of models easy with automatic tuning and a fast GPU-based system.

5. Caffe:

Built by Berkeley Artificial Intelligence Research (BAIR), Caffe is an open source deep learning framework already used for academic research projects, startup prototypes, and large-scale industrial applications.

The Caffe framework offers easy configuration, the ability to switch between GPU and CPU to train models before deployment. It is also one of the fastest systems.

6. MLlib:

Apache Spark is a general-purpose cluster computing framework that, other than high-level APIs and tools, has an open-source machine learning library called MLlib. When you download Spark, MLlib is included as a module, compatible with all APIs.

7. Torch:

Torch, an open-source ML platform, simplifies and speeds up the process of building algorithms.

Based on GPU/CPU and a simple scripting language, it is flexible and fast. Torch is already in use by major companies such as Google, Facebook, Twitter, Purdue, Yandex, NVIDIA, and others.

Found this article interesting?

Let Zayan Guedim know how much you appreciate this article by clicking the heart icon and by sharing this article on social media.


Profile Image

Zayan Guedim

Trilingual poet, investigative journalist, and novelist. Zed loves tackling the big existential questions and all-things quantum.

Comments (0)
Most Recent most recent
You
share Scroll to top

Link Copied Successfully

Sign in

Sign in to access your personalized homepage, follow authors and topics you love, and clap for stories that matter to you.

Sign in with Google Sign in with Facebook

By using our site you agree to our privacy policy.